9月1日,美团正式发布 LongCat-Flash-Chat,并同步开源。LongCat-Flash 采用创新性混合专家模型(Mixture-of-Experts, MoE)架构,总参数 560 B,激活参数 18.6B~31.3B(平均 27B),实现了计算效率与性能的双重优化。
 

根据多项基准测试综合评估,作为一款非思考型基础模型,LongCat-Flash-Chat 在仅激活少量参数的前提下,性能比肩当下领先的主流模型,尤其在智能体任务中具备突出优势。并且,因为面向推理效率的设计和创新,LongCat-Flash-Chat 具有明显更快的推理速度,更适合于耗时较长的复杂智能体应用。
 

目前,LongCat在魔搭ModelScope社区同步开源。

 

01.技术亮点

LongCat-Flash 模型在架构层面引入“零计算专家(Zero-Computation Experts)”机制,总参数量 560 B,每个token 依据上下文需求仅激活 18.6B~31.3 B 参数,实现算力按需分配和高效利用。为控制总算力消耗,训练过程采用 PID 控制器实时微调专家偏置,将单 token 平均激活量稳定在约 27 B。

 

图1:LongCat-Flash 架构图

此外,LongCat-Flash 在层间铺设跨层通道,使 MoE 的通信和计算能很大程度上并行,极大提高了训练和推理效率。配合定制化的底层优化,LongCat-Flash 在 30 天内完成高效训练,并在 H800 上实现单用户 100+ tokens/s 的推理速度。LongCat-Flash 还对常用大模型组件和训练方式进行了改进,使用了超参迁移模型层叠加的方式进行训练,并结合了多项策略保证训练稳定性,使得训练全程高效且顺利。

 

针对智能体(Agentic)能力,LongCat-Flash 自建了Agentic评测集指导数据策略,并在训练全流程进行了全面的优化,包括使用多智能体方法生成多样化高质量的轨迹数据等,实现了优异的智能体能力。
 

通过算法和工程层面的联合设计,LongCat-Flash 在理论上的成本和速度都大幅领先行业同等规模、甚至规模更小的模型;通过系统优化LongCat-Flash 在 H800 上达成了 100 tokens/s 的生成速度,在保持极致生成速度的同时,输出成本低至 5元/百万 token。

02.性能评估

全面且严谨的评估表明,LongCat-Flash 是一款强大且全能的模型,它在多个领域表现出卓越的性能优势。以下将从不同维度详细解读:

 

图2:LongCat-Flash 的基准测试性能

在通用领域知识方面,LongCat-Flash 表现出强劲且全面的性能:在 ArenaHard-V2 基准测试中取得 86.50 的优异成绩,位列所有评估模型中的第二名,充分体现了其在高难度“一对一”对比中的稳健实力。在基础基准测试中仍保持高竞争力,MMLU(多任务语言理解基准)得分为 89.71,CEval(中文通用能力评估基准)得分为 90.44。这些成绩可与目前国内领先的模型比肩,且其参数规模少于 DeepSeek-V3.1、Kimi-K2 等产品,体现出较高的效率。
 

智能体(Agentic)工具使用方面,LongCat-Flash 展现出明显优势:即便与参数规模更大的模型相比,其在 τ2-Bench(智能体工具使用基准)中的表现仍超越其他模型;在高复杂度场景下,该模型在 VitaBench(复杂场景智能体基准)中以 24.30 的得分位列第一,彰显出在复杂场景中的强大处理能力。

 

编程方面,LongCat-Flash 展现出扎实的实力:其在 TerminalBench(终端命令行任务基准)中,以 39.51 的得分位列第二,体现出在实际智能体命令行任务中的出色熟练度;在 SWE-Bench-Verified(软件工程师能力验证基准)中得分为 60.4,具备较强竞争力。
 

指令遵循方面,LongCat-Flash 优势显著:在 IFEval(指令遵循评估基准)中以 89.65 的得分位列第一,展现出在遵循复杂且细致指令时的卓越可靠性;此外,在 COLLIE(中文指令遵循基准)和 Meeseeks-zh(中文多场景指令基准)中也斩获最佳成绩,分别为 57.10 和 43.03,凸显其在中英文两类不同语言、不同高难度指令集上的出色驾驭能力。

03.模型部署

研究团队同步提供了分别基于 SGLang 和 vLLM 的两种高效部署方案,助您轻松部署、快速体验模型效果。

 

以下为使用SGLang进行单机部署的示例:

SGLANG_USE_MODELSCOPE=true python3 -m sglang.launch_server \    
  --model meituan-longcat/LongCat-Flash-Chat-FP8 \    
  --trust-remote-code \    
  --attention-backend flashinfer \    
  --enable-ep-moe \    
  --tp 8

 

其他更为详细的部署指导请参阅 LongCat-Flash-Chat 仓库:

https://github.com/meituan-longcat/LongCat-Flash-Chat

04.模型微调

您可以使用ms-swift对LongCat-Flash-Chat进行微调,以下为训练脚本示例:

# pip install git+https://github.com/modelscope/ms-swift.git
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \
NPROC_PER_NODE=8 \
swift sft \
    --model meituan-longcat/LongCat-Flash-Chat \
    --train_type lora \
    --dataset 'AI-ModelScope/alpaca-gpt4-data-zh
#500
' \
              'AI-ModelScope/alpaca-gpt4-data-en
#500
' \
              'swift/self-cognition
#500
' \
    --torch_dtype bfloat16 \
    --num_train_epochs 1 \
    --per_device_train_batch_size 1 \
    --per_device_eval_batch_size 1 \
    --learning_rate 1e-4 \
    --lora_rank 8 \
    --lora_alpha 32 \
    --target_modules all-linear \
    --gradient_accumulation_steps 16 \
    --eval_steps 50 \
    --save_steps 50 \
    --save_total_limit 2 \
    --logging_steps 5 \
    --max_length 2048 \
    --output_dir output \
    --warmup_ratio 0.05 \
    --dataloader_num_workers 4 \
    --deepspeed zero3_offload \
    --model_author swift \
    --model_name swift-robot

05.开源地址

ModelScope:

https://modelscope.cn/models/meituan-longcat/LongCat-Flash-Chat

 

Github:

https://github.com/meituan-longcat/LongCat-Flash-Chat

 

此次LongCat开源仓库统一采用 MIT License,并允许用户利用模型输出、通过模型蒸馏等方式训练其他模型。

 

点击链接即可跳转模型~

https://modelscope.cn/models/meituan-longcat/LongCat-Flash-Chat
 

Logo

ModelScope旨在打造下一代开源的模型即服务共享平台,为泛AI开发者提供灵活、易用、低成本的一站式模型服务产品,让模型应用更简单!

更多推荐